
UNCLASSIFIED ,
SECUP!'V CLASSIFICATIOn OF THIS PACE (Wh"enDataEntered) ' "-h

REPORT DOCUMENTATION PAGE Um o ,m:no..s

1. REPORT NUMBER 12. GOVT ACCESSION M0. 3. RECIPIEhl'S CATALOG IU0BER

4. TITLE (andSubtitle) 5. TYPE OF REPORT A PERIOD COVERED

0 Ada Compiler Validation Summary ReportLrARTAN 21 June 1989 to 21 June 1990

M LABORATORIES INCORPORATED, TARTAN ADA VMS/1750a, Version 5. PERFORMING*RG. REPORT NUMBER

2.11, VAXstation (Host) to FAIRCHILD F9450 Target ACVC

Lg. 7. UTHOR~s S. CONTRACT OR 6RAN, NUMBERs)

IABC"
cj Ottobrunn, Federal Republic of Germany.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

IABG,
Ottobrunn, Federal Republic of Germany.

E( 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office
United States Department of Defense 1.
Washington, DC 20301-3081

14. NO ITORING AGENCY NAKi & ADDRESS(If different from Controlling Office) 15. SECUR IT v CLASS of this report)

IABG, UNCLASSIFIED

Ottobrunn, Federal Republic of Germany. i5a. N/ICATION"DOw% RAOING____________________________________N/A

18. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17.: DISTRIB TION STATEmENT (of the abstract entredn Block20 If d fferent from Report)

UNCLASSIFIED DTIC
1, SUPP.EMWNTARI NOTES D TC

19. KEYWORDS (Continue on reverse sdce if necessary and ,dentif by blo(Ak number)

Ada Progran-ring language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary ond iden f) by block number)

TARTAN LABORATORIES INCORPORATED, TARTAN ADA VMS /1750c. Version 2.11, Ottobrunn, West

Germany, VAXstation 3200 under Micro'MS 4.7 (Host)to FAIRCHILD F9450 (MIL-STD-1750a,

bare machine) (Target), ACVC 1.10.

DD Ou" 1473 EDITION OF I NOV 65 I5 OBSOLETE
I JAN 73 S/N o102-LF-014-60 , UNCLASSIFIED

~~ SECUR1IY CLASSIFICATION OF THIS PAGE (bWhen Data Entered)



Ada Compiler Validation Summary Report:

Com~piler Name: TART11 ADA VIIS/1750a Version 2.11

Certificate Number: #390621I!.10148

Host: VAXstation 3200 under MicroVMS 4.7

Target: FAIRCHILD F9450 (M!IL-STD-1750a, bare machine)

Testing comple,:ed 21 June 1989 using ACVC 1.10.

This report has been re;ieqed and is approved.

Dr S. Heilbrunner
IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn
West Germany

da alidation Organiztion
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 223?1

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301



AVF Control Number: AVF-IABG-029

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: #89062111.10148
TARTAN LABORATORIES INCORPORATED
TARTAN ADA VMS/1750a Version 2.11

VAXstation to FAIRCHILD F9450

Completion of On--Site Testing:
21 June 1989

Prepared By:
IABG mbH. Abt SZT
Einsteinstr 20
D8012 Ottobrunn
West Germany

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ...... ... .................. 1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . ... 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT ... ...... 2
1.3 REFERENCES ......... ................... 3
1.4 DEFINITION OF TERMS ....... ............... 3
1.5 ACVC TEST CLASSES ........ ................ 4

CHAPTER 2 CONFIGURATION INFORMATION ...... ............ 7

2.1 CONFIGURATION TESTED ....... .............. 7
2.2 IMPLEMENTATION CHARACTERISTICS .... ......... 8

CHAPTER 3 TEST INFORMATION ................ ........ 13

3.1 TEST RESULTS ....... .................. ... 13
3.2 SUMMARY OF TEST RESULTS BY CLASS .... ........ 13
3.3 SUMMARY OF TEST RESULTS BY CHAPTER ........ .. 14
3.4 WITHDRAWN TESTS ...... ................. .. 14
3.5 INAPPLICABLE TESTS ... ............... 14
3.6 TEST, PROCESSINIG, AND EVALUATION MODIFICATIONS 18
3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation ........ ................. 19
3.7.2 Test Method ........ .................. 19
3.7.3 Test Site ....... ................... ... 20

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

Accession For

APPENDIX C TEST PARAMETERS NTIS GRA&I
DTIC TAB

% Ummnounced

APPENDIX D WITHDRAWN TESTS - Justtication

By
APPENDIX D COMPILER AND LINKER OPTIONS Ditribution/

I Avallability Codes
Avail- and/or

1Dlst Special



INTRODUCT!CN

CHAPTER 1

INTRODUCTION

This Validation Summary Report (-VS'tr--describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of .esting this compiler using the Ada Compiler
Validation Capability, (ACVC)-. An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.-\

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent,, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time,, and during execution. 7

/
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:



INTRODUCTION

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by IABG mbH, Abt SZT according to
procedures established by the Ada Joint Program Office and administered by
the Ada Validation Organization (AVO). On-site testing was completed 21
June 1989 at Tartan Laboratories Inc., Pittsburgh, Pa.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311



INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsinle for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for The purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.



INTRODUCTION

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and eAecution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or serantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.



INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message iadicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECKFILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
tests. However, some tests contain values that require the test to be



INTRODUCTION

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

S



CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: TARTAN ADA VMS/1750a Version 2.11

ACVC Version: 1.10

Certificate Number: #89062111.10148

Host Computer:

Machine: VAXstation 3200

Operating System: XicroVMS 4.7

Memory Size: 8 MB

Target Computer:

Machine: FAIRCHILD F9450 (MIL-STD-1750a)

Operating System: bare machine

Memory Size: 64k words

7



CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29@02K.)

2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55AO3A..H (8
tests).)

3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 10
levels. (See tests D64005E..F (3 tests).)

b. Predefined types.

1) This implementation supports the additional predefined types
SHORT_INTEGER, LONG-INTEGER, BYTEINTEGER, and LONG-FLOAT in
the package STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1) None of the default initialization expressions for record
components are evaluated before any value is
checked for membership in a component's subtype. (See test
C32117A.)

2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)



CONFIGURATION INFORMATION

3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test C35903A.)

4) NUMERICERROR is raised for largest integer and no exception
is raised for predefined integer when an integer literal
operand in a comparison or membership test is outside the
range of the base type. The base type for smallest integer is
no smaller than predefined integer. (See test C45232A.)

5) No exception is raised when a literal operand in a fixed-
point comparison or membership test is outside the range of
the base type. (See test C45252A.)

6) Underflow is not gradual. (See tests C45524A..Z (26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

1) The method used for rounding to integer is round away from
zero. (See tests C460i2A..Z (26 tests).)

2) The method used for rounding to longest integer is round
away from zero. (See tests C46012A..Z (26 tests).)

3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises NUMERIC-ERROR for
one dimensional array types, two dimensional array types and
two dimensional array subtypes, where the higher bound is the
first one, and CONSTRAINTERROR for two dimensional array
subtypes where the higher bound is the second one. (See test
C36003A.)

2) No exception is raised when an array type with
INTEGER'LAST + 2 components is declared. (See test
C36202A.)



CONFIGURATION INFORMATION

3) NUMERICERROR is raised when an array type with
SYSTEM.MAXINT + 2 components is declared. (See test
C36202B.)

4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC-ERROR when the array type is declared. (See
test C52103X.)

5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERICERROR when the array
type is declared and exceeds INTEGER'LAST. (See test
C52104Y.)

6) In assigning one-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

7) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

8) A null array with one dimension of length greater
than INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an implemen-
tation may accept the declaration. However, lengths must
match in array slice assignments. This implementation raises
NUMERICERROR when the array type is declared. (See
test E52103Y.)

f. Discriminated types.

1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT-ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C43207B.)

2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)



CONFIGURATION INFORMATION

3) CONSTRAINT-ERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null
aggregate does not belong to an index subtype. (See test
E43211B.)

h. Pragmas.

1) The pragma INLINE is supported for functions and
procedures but not when applied across compilation units.
(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

i. Generics.

This compiler enforces the following two rules concerning
declarations and proper bodies which are individual compilation
units:

o generic bodies must be compiled and completed before their
instantiation.

o recompilation of a generic body or any of its transitive
subunits makes all units obsolete which instantiate that
generic body.

These rules are enforced whether the compilation units are in
separate compilation files or not. A1408 and AI506 allow this
behaviour.

1) Generic specifications and bodies can be compiled
in separate compilations. (See tests CA1012A, CA2009C,
CA2009F, tC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be
compiled in separate compilations. (See tests CA1012A and
CA2009F.)

3) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CA1O12A.)

4) Generic non-library package bodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bodies can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit bodies and their subunits can be

!U



CONFIGURATION INFORMATION

compiled in separate compilations. (See test CA3011A.)

7) Generic package declarations and bodies can be
compiled in separate compilations. (See tests CA2009C,
BC3204C, and BC3205D.)

8) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests
BC3204C and BC3205D.)

9) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3011A.)

j. Input and output.

1) The package SEQUENTIAL_10 can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C, EE2201D,
and EE2201E.)

2) The package DIRECTIO can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101H, EE2401D,
and EE2401G.)

3) The director, AJPO, has determined (AI-00332) that every call
to OPEN and CREATE must raise USEERROR or NAMEERROR if file
input/output is not supported. This implementation exhibits
this behavior for SEQUENTIAL_IO, DIRECT_IO, and TEXTIO.

12



TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 43 tests had been withdrawn because of test errors. The AVF
determined that 591 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for
285 executable tests that use floating-point precision exceeding
that supported by the implementation, and for 238 executable tests
that use file operations not supported by the implementation.
Modifications to the code, processing, or grading for 81 tests were
required to successfully demonstrate the test objective. (See section
3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY CF TEST RESULTS BY CLASS
RESULT TEST CLASS TOTAL

A B C D E L

Passed 129 1135 1744 16 14 44 3082

Inapplicable 0 3 571 1 14 2 591

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

!3



TEST INFORMATION;

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RE3ULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 192 547 508 248 171 99 162 332 127 36 252 332 76 3082

N/A 20 102 172 0 1 0 4 0 10 0 0 37 245 591

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10
at the time of this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84N CD2A84M CD50110 CD2B15C CD7205C CD2D11B
CD5007B ED7004B ED7005C ED7005D ED7006C ED7006D
CD7105A CD7203B CD7204B CD7205D CE2107I CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 519 tests were inapplicable for the
reasons indicated:

a. The following 285 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)

14



TEST INFORMATION

C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

b. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT-FLOAT.

c. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAXMANTISSA is less than 32.

d. D64005G is inapplicable because this implementation does not
support nesting 17 levels of recursive procedure calls.

e. C86001F is not applicable because, for this implementation, the
package TEXT_10 is dependent upon package SYSTEM. This test re-
compiles package SYSTEM, making package TEXT_IO, and hence
package REPORT, obsolete.

f. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

g. B8600lZ is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG-FLOAT, or SHORTFLOAT.

h. CA2009A, CA2009C, CA2009F and CA2009D are not applicable because
this compiler creates dependencies between generic bodies, and
units that instantiate them (see section 2.2i for rules and
restrictions concerning generics).

i. LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F are not
applicable because this implementation does not support pragma
INLINE when applied across compilation units (See Appendix F of
the Ada Standard in Appendix B of this report, and Section 2.2.h
(1)).

j. CD1009C, CD2A41A..E (5 tests), and CD2A42A..J (10 tests) are not
applicable because this implementation imposes restrictions on
'SIZE length clauses for floating point types.

k. CD2A61E, CD2A61G, and CD2A61I are not applicable because this
implementation imposes restrictions on 'SIZE length clauses for
array types.

1. CD1C04E is not applicable because this implementation rejects
component clauses for scalar components which specify a layout
crossing storage unit boundaries.

m. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable



TEST INFORMATION

because this implementation imposes restrictions on 'SIZE length
clauses for access types.

n. CD2A91A..E (5 tests) are not applicable because 'SIZE length
clauses for task types are not supported.

o. CD2B11G is not applicable because 'STORAGESIZE representation
clauses are not supported for access types where the designated
type is a task type.

p. CD2B15B is not applicable because a collection size larger than
the size specified was allocated.

q. The following 238 tests are inapplicable because sequential, text,
and direct access files are not supported:

CE2102A..C (3 tests) CE2102G..H (2 tests)
CE2102K CE2102N..Y (12 tests)
CE2103C..D (2 tests) CE2104A..D (4 tests)
CE2105A..B (2 tests) CE2106A..B (2 tests)
CE2107A..H (8 tests) CE2107L
CE2108A..B (2 tests) CE2108C..H (6 tests)
CE2109A..C (3 tests) CE2110A..D (4 tests)
CE2111A..I (9 tests) CE2115A..B (2 tests)
CE2201A..C (3 tests) CE2201F..N (9 tests)
CE2204A..D (4 tests) CE2205A
CE2208B CE2401A..C (3 tests)
CE2401E..F (2 tests) CE2401H..L (5 tests)
CE2404A..B (2 tests) CE2405B
CE2406A CE2407A..B (2 tests)
CE2408A..B (2 tests) CE2409A..B (2 tests)
CE2410A..B (2 tests) CE2411A
CE3102A..B (2 tests) EE3102C
CE3102F..H (3 tests) CE3102J..K (2 tests)
CE3103A CE3104A..C (3 tests)
CE3107B CE3108A..B (2 tests)
CE3109A CE3110A
CE3111A..B (2 tests) CE3111D..E (2 tests)
CE3112A..D (4 tests) CE3114A..B (2 tests)
CE3115A EE3203A
CE3208A EE3301B
CE3302A CE3305A
CE3402A EE3402B
CE3402C..D (2 tests) CE3403A..C (3 tests)
CE3403E..F (2 tests) CE3404B..D (3 tests)
CE3405A EE3405B
CE3405C..D (2 tests) CE3406A..D (4 tests)
CE3407A..C (3 tests) CE3408A..C (3 tests)
CE3409A CE3409C..E (3 tests)
EE3409F CE3410A
CE3410C..E (3 tests) EE341OF



TEST INFORMATION

CE3411A..B (2 tests) CE3412A
EE3412C CE3413A
CE3413C CE3602A..D (4 tests)
CE3603A CE3604A..B (2 tests)
CE3605A..E (5 tests) CE3606A..B (2 tests)
CE3704A..F (6 tests) CE3704H..O (3 tests)
CE3706D CE3706F..G (2 tests)
CE3804A..P (16 tests) CE3805A..B (2 tests)
CE3806A..B (2 tests) CE3806D..E (2 tests)
CE3806G..H (2 tests) CE3905A..C (3 tests)
CE3905L CE3906A..C (3 tests)
CE3906E..F (2 tests)

These tests were not processed because their inapplicability can
be deduced from the result of other tests.

r. Tests CE2103A..B (2 tests) and CE3107A raise USE-ERROR although
NAMEERROR is expected. These tests report FAILED but they were
graded not applicable because this implementation does not support
permanent files.

s. EE2201D, EE2201E, EE2401D, EE24O1G are inapplicable because
sequential, text, and direct access files are not supported.

17



TEST INFORMATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 81 tests.

a. The following tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B24007A B24009A B25002B B32201A B34005N
B34005T B34007H B35701A B36171A B36201A B37101A
B37102A B37201A B37202A B37203A B37302A B38003A
B38003B E38008A B38008B B38009A B38009B B38103A
B38103B B38103C B38103D B38103E B43202C B44002A
B48002A B48002B B48002D B48002E B48002G B48003E
B49003A B49005A B49006A B49007A B49009A B4AO10C
B54A20A B54A25A B58002A B58002B B59001A B59001C
B59001I B62006C B67001A B67001B B67001C B67001D
B74103E B74104A B85007C B91005A B95003A B95007B
B95031A B95074E BC1002A BC1109A BC1109C BC1206A
BC2001E BC3005B BC3009C BD5005B

b. For the two tests BC3204C and BC3205D, the compilation order was
changed to

BC3204C0, C1, C2, C3M, C4, C5, C6, C3M
and

BC3205D0, D2, DIM

respectively. This change was necessary because of the compiler's
rules for separately compiled generic units (see section 2.2i for
rules and restrictions concerning generics). When processed in
this order the expected error messages were produced for BC3204C3M
and BC3205D1M.

c. The two tests BC3204D and BC3205C consist of several compilation
units each. The compilation units for the main procedures are
near the beginning of the files. When processing these files
unchanged, a link error is reported instead of the expected
compiled generic units. Therefore, the compilation files were
modified by appending copies of the main procedures to the end of



TEST INFORMATION

these files. Then processed, the expected error messages were
generated by the compiler.

d. Tests C39005A, CD7004C, CD7005E and CD7006E wrongly presume an
order of elaboration of the library unit bodies. These tests were
modified to include a PRAGMA ELABORATE (REPORT);

e. Test E28002B checks that predefined or unrecognized pragmas may
have arguments involving overloaded identifiers without enough
contextual information to resolve the overloading. It also checks
the correct processing of pragma LIST. For this implementation,
pragma LIST is only recognised if the compilation file is compiled
without errors or warnings. Hence, the test was modified to
demonstrate the correct processing of pragma LIST.

f. Tests C45524A and C45524B contain a check at line 136 that may
legitimately fail as repeated division may produce a quotient that
lies within the smallest safe interval. This check was modified
to include, after line 138, the text:

ELSIF VAL <= F'SAFESMALL THEN COMMENT ("UNDERFLOW SEEMS GRADUAL");

For this implementation, the required support package specification,
SPPRT13SP, was rewritten to provide constant values for the function names.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the TARTAN ADA VMS/1750a Version 2.11 compiler was submitted to the
AVF by the applicant for review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests, and the
compiler exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the TARTAN ADA VMS/1750a Version 2.11 compiler using ACVC
Version 2.11 was conducted by IABG on the premises of TARTAN. The
configuration in which the testing was performed is described by the
following designations of hardware and software components:

Host Computer:
Machine: VAXstation 3200
Operating System: MicroVMS 4.7
Memory Size: 8 MB



TEST INFORMATION

Target Computer:
Machine: FAIRCHILD F9450 (MIL-STD-1750a)
Operating System: bare machine
Memory Size: 64k words

Compiler:
TARTAN ADA VMS/1750a Version 2.11

The original ACVC was customized prior to the validation visit in order to
remove all withdrawn tests and tests requiring unsupported floating point
precisions. Tests that make use of implementation specific values were
also customized. Tests requiring modifications during the prevalidation
testing were modified accordingly.

A tape containing the customized ACVC was read by the host computer.

After the test files were loaded to disk, the full set of tests was
compiled and linked. All executable tests were transferred via an RS232
line to the target computer where they were run. Results were transferred
to the host computer in the same way. Results were then transfered via an
Ethernet connection to another VAXstation, where they were evaluated and
archived.

The compiler was tested using command scripts provided by TARTAN
LABORATORIES INCORPORATED and reviewed by the validation team. The
compiler was tested using no option settings. All chapter B tests were
compiled with the listing option on (i.e. /LIST). The linker was called
with the command

AL17 LINK <testname>

A full list of compiler and linker options is given in Appendix E.

3.7.3 Test Site

Testing was conducted at TARTAN LABORATORIES INCORPORATED, Pittsburgh and
was completed on 21 June 1989.

.1



DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

TARTAN LABORATORIES INCORPORATED has submitted the following
Declaration of Conformance concerning the TARTAN ADA VMS/1750a
Version 2.11 compiler.



DECLARATION OF CONFORMANCE

Compiler Implementor: Tartan Laboratories Incorporated
Ada Validation Facility: IABG mbH, Dept. SZT
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: Tartan Ada VMS/1750A Version 2.11
Host Architecture: VAXstation 3200
Host OS and Version: MicroVMS V4.7
Target Architecture: Fairchild F9450 (MIL-STD-1750A)
Target OS and Version: Bare Machine

Implementor's Declaration

I, the undersigned, representing Tartan Laboratories Incorporated,
have implemented no deliberate extensions to the Ada Language
Standard ANSI/MIL-STD-1815A in the compiler listed in this
declaration. I declare that Tartan Laboratories Incorporated is
the owner of record of the Ada Language compiler listed above and,
as such, is responsible for maintaining said compiler in conform-
ance to ANSI/MIL-STD-1815A. All certificates and registrations
for Ada Language compiler listed in this declaration shall be made
only in the owner's corporate name.

& Date: _-_23_4
Tartan Laboratories Incorporated
D. L. Evans, President

Owner's Declaration

I, the undersigned, representing Tartan Laboratories incorporated,
take full responsibility for implementation and maintenance of the
Ada compiler listed above, and agree to the public disclosure of
the final Validation Summary Report. I declare that all of the
Ada Language compilers listed, and their host/target performance,
are in compliance with the Ada Language Standard ANSI/MIL-STD-
1815A.

_ _ _ _ _ _ _ _ _ _ _Date: __ _ _-_ _

Tartan Labozfories Incorporated
D. L. Evans, President



APPENDIX F OF THE Ada STAI!DARD

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies corres-
pond to implementation-dependent pragmas, to certain machine-
dependent conventions as mentioned in chapter 13 of the Ada Stan-
dard, and to certain allowed restrictions on representation
clauses. The implementation-dependent characteristics of the
TARTAN ADA VMS/1750a Version 2.11 compiler, as described in this
Appendix, are provided by TARTAN LABORATORIES INCORPORATED.
Unless specifically noted otherwise, references in this appendix
are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, are
contained in Appendix F.



Chapter 5
Appendix F to MYL-STD-1815A

This chapter contains the required Appendix F to Military Standard, Ada Programming Language,
ANSI/MEL-STD-1815A (American National Standards Institute, Inc., February 17,1983).

5.1. PRAGMAS

5.1.1. Predefined Pragmas

This serion summarizes the effects of and restrictions on predefimed pragmas.

Access k; :.ections are not subject to automatic storage reclamation so pragma CONTROLLED has no effect.
Space deallocated by means of UNCHECKED_DEALLOCATION will be reused by the allocation of new
objects.

* Pragma ELABORATE is fully supported.

* Pragma INLINE is supported but has an effec. on the generated code only when the call appears within the
same compilation unit as the body of the in-lined subprogram.

* Pragma INTERFACE is not supported. The implementation-defined pragma FOREIGNBODY (See Sec-
tion 5.1.2.2) can be used to interface to subprograms written in other languages.

* Pragma LIST is supported but has the intended effect only if the command qualifier LIST-ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or warnings.

* Tartan compilers currently optimize both the time and space aspects based on what is best in the local
context. Future releases of the compiler will have option switches to decrease the level of sophistication of
the optmizations. Because it is generally very difficult to establish global time and space tradeoffs,
pragma OPTIMIZE cannot be effectively supported in the form suggested in the LRM.

* Pragma PACK is fully supported.

* Pragma PAGE is supported but has the intended effect only if the command qualifier LIST-ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or warnings.

* Pragma PRIORITY is fully supported.
* Pragma SUPPRESS is fully supported as required by Ada LRM 11.7.

* Future releases of the compiler will support the following pragmas: MEMORY_SIZE, SHARED,
STORAGEUNIT and SYSTEMNAME.

A warning message will be issued if an unsupported pragma is supplied.

5.1.2. Implementation-Defined Pragmas

Implementation-defined pragmas provided by Tartan are described in the following sections.

5-1



USER MANUAL FOR TARTAN ADA VMS 1750A

5.12.1. Prag=e LINKAGENAME

The pragma LINKAGE NAME associates an Ada entity with a string that is meaningful externally; e.g., to a
linkage editor. It takes the form

pragma LINKAGENAME (Ada-simple-name, string-constant)

The Ada-simple-name must be the name of an Ada entity declared in a package specification. This entity must be
one that has a mntime representation; e.g., a subprogram, exception or objecL It may not be a named number or
string constant. The pragma must appear after the declaration of the entity in the same package specification.

The effect of ihe pragma is to cause the string-constant to be used in the generated assembly code as an
external name for the associated Ada entity. It is the responsibility of the user to guarantee that this string
constant is meaningful to the linkage editor and that no illegal linkname clashes arise.

5.1.2.2. PragMa FOREIGNBODY

A subprogram written in another language can be called from an Ada program. Pragma FOREIGNBODY is
used to indicate that the body for a non-generic top-level package specification is provided in the form of an
object module. The bodies for several subprograms may be contained in one object module.

Use of the pragma FOREIGNBODY dictates that ail subprograms, exceptions and objects in the package are
provided by means of a foreign object module. In order to successfully link a program including a foreign body,
the object module for that body must be provided to the library using the AL17 FOREIGN-BODY command
described in Section 4.7.

The pragma is of the form:
pragma FOF-IGNBODY (languagenane [, elaboration._routine name])

The parameter languagename is a string intended to allow the compiler to identify the calling convention used
by the foreign module (but this functionality is not yet in operation). Currently, the programmer must ensure that
the calling convention and data representation of the foreign body procedures are compatible with those used by
the Tartan Ada compiler. Subprograms called by tasks should be reentrant.

The optional elaboration routine name string argument provides a means to initialize the package. The
routine specified as the elaboration.routine name, which will be called for the elaboration of this package body,
must be a global routine in the object module provided by the user.

A specification that uses this pragma may contain only subprogram declarations, object decarations that use
an unconstrained type mark, and number declarations. Pragmas may also appear in the package. The type mark
for an object cannot be a task type, and the object declaration must not have an initial value expression. The
pragma must be given prior to any declarations within the package specification. If the pragma is not located
before the first declaration, or any restriction on the declarations is violated, the pragma is ignored and a warning
is generated.

The foreign body is entirely responsible for initializing objects declared in a package utilizing pragra
FOREIGN BODY. In particular, the user should be aware that the implicit initializations described in LRM 3.2.1
are not done by the compiler. (These implicit initializations are associated with objects of access types, certain
record types and composite types containing components of the preceding kinds of types.)

Pragma LINKAGE_NAME should be used for all declarations in the package, including any declarations in a
nested package specification to be sure that there are no conflicting link names. If pragma LINKAGENAME is
not used, the cross-reference qualifier, /CROSSREFERENCE, (see Section 3.2) should be used when invoking
the compiler and the resulting cross-reference table of linknames inspected to identify the linknames assigned by
the compiler and determine that there are no conflicting linknames (see also Section 3.5).

In the following example, we want to call a function pinr which computes polynomials and is written in C.

5-2



APPENDIX F TO %ML-SMD-1SISA

package MATH FUNCS iS
pragma FOREIGN BODY ("C");
function POLYNOMIAL (X: INTEGER) return INTEGER;

--Ada spec matching the C routine
pragma LINKAGENAME (POLYNOMIAL, "plmn");

--Force compiler to use name "plmn" when referring to this
-- function

end MATH_FUNCS;

with MATH FUNCS; use MATHFUNCS
procedure MAIN is
X:INTEGER :- POLYNOMIAL(10);

-- Will generate a call to "plmn"
begin ...

end MAIN;
To compile, link and run the above program, you do the following steps:

1. Compile MATH._FUNCS

2. Compile MAIN

3. Obtain an object module (e.g. math. TOF) containing the compiled code for plmn.

4. Issue the command

AL17 FOREIGN BODY math funcs MATH.TOF

5. Issue the command

ALl7 LINK MAIN

Without Step 4, an attempt to link will produce an error message informing you of a missing package body for
MATHFUNCS.

Using an Ada body from another Ada program library. The user may compile a body written in Ada for a
specification into the library, regardless of the language specified in the pragma contained in the specification.
This capability is useful for rapid prototyping, where an Ada package may serve to provide a simulated response
for the functionality that a foreign body may eventually produce. It also allows the user to replace a foreign body
with an Ada body without recompiling the specification.

The user can either compile an Ada body into the library, or use the command ALl7 FOREIGNBODY (See
Section 4.7) to use an Ada body from another library. The Ada body from another library must have been
compiled under an identical specification. The pragma LINKAGENAME must have been applied to all entities
declared in the specification. The only way to specify the linkname for the elaboration routine of an Ada body is
with the pragma FOREIGNBODY.

Using Calls to the Operating System. In soi-im Ltases, the foreign code is actually supplied by the operating
system (in the case of system calls) or by runtime libraries for other programming languages such as C. Such
calls may be made using a dummy procedure to supply a file specification to the AL17 FOREIGN BODY
command. You need a dummy .TOF file which may be obtained in a number of ways. One way is to compile
the procedure

procedure DUMMY iS
begin

null;
end;

Then, use the library command
AL17 FOREIGN pkg DUMMY. TOF

where pkg is the name of the package that contains the pragma LINKAGENAME for the operating system call.
For example to use the VMS system service LIB$GET_VM in the program TEST:

5-3



USER MANUAL FOR TARTAN ADA VMS 1750A

Package MEMORY is
pragMa FOREIGN BODY ("ASM");
procedure GETVIRTUALMEMORY (MEM: INTEGER);
pragMia LINKAGE-NAME (GET-VIRTUALMEMORY, "LIB$GETVM ");

end MEMORY;

with MEMORY;
procedure TEST iS

begin
GET VIRTUAL MEMORY(MEM);

end TEST;

Obtain the file dummy. TOF. Then use

AL17 FOREIGN pkg DUMMY. TOF

to include the body for the system call in the library.

5.2. IMPLEMENTATION-DEPENDENT ATTRIBUTES
No implementation-dependent auributes are currently supported.

5.3. SPECIFICATION OF THE PACKAGE SYSTEM
The parameter values specified for MIL-STD-1750A in package SYSTEM [LRM 13.7.1 and Annex C] ae:

package SYSTEM is
type ADDRESS is new INTEGER;
type NAME is (MIL STD 1750A);
SYSTEMNAME : Fonstint NAME :- MILSTD_1750A;
STORAGE UNIT : constant :- 16;
MEMORYSIZE : constant : 65536;
MAX INT : constant :- 2147483647;
MININT : constant :. -MAXINT - 1;
MAXDIGITS : constant :- 9;
MAX MANTISSA : constant :- 31;
FINE DELTA : constant :-2#1.0#e-31;
TICK": constant :- 0.0001;
subtype PRIORITY is INTEGER range 10 .. 200;
DEFAULTPRIORITY : constant PRIORITY :- PRIORITY'FIRST;

end SYSTEM;

5.4. RESTRICTIONS ON REPRESENTATION CLAUSES

The following sections explain the basic restrictions for representatioix specifications followed by additional
restrictions applying to specific kinds of clses.

5.4.1. Ba.- Restriction
The basic restriction on representation specifications [LM 13.1] that they may be given only for types

declared in terms of a type definition, excluding a generictypejdefinition M 12.1) and a
private.type_definition (LRM 7.4). Any representation clause in violation of these rules is not obeyed
by the compiler, a diagnostic message is issued.

Further restrictions are explained in the following sections. Any representatioa- clauses violating those restric-
tions are not obeyed but cause a diagnostic message to be issued.

5-4



APPENDDC F TO MIL-STD-1815A

5.4.2. Length Clauses
Length clauses [LRM 13.21 are, in general, supported. For details, refer to the following sections.

5.42.1. Size Specifwations for Types
The rules and restrictions for size specifications applied to types of various classes are described below.
The following principle rules apply:

1. The size is specified in bits and must be given by a static expression.

2. The specified size is taken as a mandate to store objects of the type in the given size wherever feasible.
No attempt is made to store values of the type in a smaller size, even if possible. The following rules
apply with regard to feasibility:

* An object that is not a component of a composite object is allocated with a size and alignment that
is referable on the target machine; that is, no attempt is made to create objects of non-referable size
on the stack. If such stack compression is desired, it can be achieved by the user by combining
multiple stack variables in a composite object; for example

type MyEnum is (A,B);
for My enum'size use 1;
V,W: My_enum; -- will occupy two storage

-- units on the stack
-- (if allocated at all)

type rec is record
V,W: My_enum;

end record;
pragma Pack(rec);
0: rec; -- will occupy one storage unit

* A formal parameter of the type is sized according to calling conventions rather than size
specifications of the type. Appropriate size conversions upon parameter passing take place
automatically and are transparent to the user.

* Adjacent bits to an object that is a component of a composite object, but whose size is
non-referable, may be affe ted by assignments to the object, unless these bits are occupied by other
components of the composite object; that is, whenever possible, a component of non-referable size
is made referable.

In all cases, the compiler generates correct code for all operations on objects of the type, even if they are
stored with differing representational size in different contexts.

Note: A size specification cannot be used to force a certain size in value operations of the type; for
example

type my_mt is range 0..65535;
for my_int'size use 16; -- o.k.
A,B: my_int;

.A + B... -- this operation will generally be
-- executed on 32-bit values

3. A size specification for a type specifies the size for objects of this type and of all its subtypes. For
components of composite types, whose subtype would allow a shorter representation of the component,
no attempt is made to take advantage of such shorter representations. In contrast, for types without a
length clause, such components may be represented in a lesser number of bits than the number of bits
required to represent all values of the type. Thus, in the example

5.5



USER MANUAL FOR TARTAN ADA VMS 1750A

type MYINT is range 0..2**15-1;
for MY INT'SIZE use 16; -- (1)
subtype SMALL MYINT is MYINT range 0..255;
type R is record

X: SMALL MYINT;

end record;

the component R.X will occupy 16 bits. In the absence of the length clause at (1), R.X may be represented
in 8 bits.

For the following type classes, the size specification must coincide with the default size chosen by the compiler
for the type:

" access types
" floating-point types
" task types

No useful effect can be achieved by using size specifications for these types.

5.422. Size Specoficadon for Scalar Types

The specified size must accommodate all possible values of the type including the value 0 (even if 0 is not in
the range of the values of the type). For numeric types with negative values the number of bits must account for
the sign bit. No skewing of the representation is attempted. Thus

type myint is range 100..101;

requires at least 7 bits, although it has only two values, while

type myint is range -101..-100;

requires 8 bits to account for the sign bit.
A size specification for a real type does not affect the accuracy of operations on the type. Such influence

should be exerted via the accuracydefinition of the type (LRM 3.5.7, 3.5.9).
A size specification for a scalar type may not specify a size larger than the largest operation size supported by

the target architecture for the respective class of values of the type.

5.423. Size Specifwation for Array Types

A size specification for an array type must be large enough to accommodate all components of the array under
the densest paking strategy explained below in adherence to any alignment constraints on the component type
(see Section 5.4.7).

Arrays with component size less than or equal to 16 bits are densely packed. No pad or unused bits exist
between components. Arrays with component size greater than 16 bits are padded up to the next 16-bit bound-
ary. The size of the component type cannot be influenced by a length clause for an array. Within the limits of
representing all possible values of the component subtype (but not necessarily of its type), the representation of
components may, however, be reduced to the minimum number of bits, unless the component type carries a size
specification.

If there is a size specification for the component type, but not for the array type, the component size is
rounded up to a referable size, unless pragma PACK is given. This applies even to boolean types or other types
that require only a single bit for the representation of all values.

5.42.4. Size Speciflcaoon for Record Types
A size specification for a record type does not influence the default type mapping of a record type. The size

must be at least as large as the number of bits determined by type mapping. Influence over packing of com-
ponents can be exerted by means of (partial) record representation clauses or by Pragma PACK.

5-6



APPENDIX F TO MIL-ST-1815A

Neither the size of component types. nor the representation of component subtypes can be ifluenced by a
length clause for a record.

The only implementation-dependent components allocated by Tartan Ada in records contain dope information
for arrays whose bounds depend on discriminants of the record or contain relative offsets of components within a
record layout for record components of dynamic size. These implementation-dependent components cannot be
named or sized by the user.

A size specification cannot be applied to a record type with components of dynamically determined size.
Note: Size specifications for records can be used only to widen the representation accomplished by padding at

the beginning or end of the record. Any narrowing of the representation over default type mapping must be
accomplished by representation clauses or pragma PACK.

5.4.2.5. Specifiaton of Coilection Sizes
The specification of a collection size causes the collection to be allocated with the specified size. It is

expressed in storage units and need not be static; refer to package SYSTEM for the meaning of storage units.
Any attempt to allocate more objects than the collection can hold causes a STORAGEERROR exception to be

raised. Dynamically sized records or arrays may carry hidden administrative storage requirements that must be
accounted for as part of the collection size. Moreover, alignment constraints on the type of the allocated objects
may make it impossible to use all memory locations of the allocated collection. Furthermore, some administra-
tive overhead for the allocator must be taken into account by the user (currently 1 word per allocated object).

In the absence of a specification of a collection size, the collection is extended automatically if more objects
are allocated than possible in the collection originally allocated with the compiler-established default size. In this
case, STORAGZ ERROR is raised only when the available target memory is exhausted. If a collection size of
zero is specified, no access collection is allocated.

5.42.6. Specifiadon of Task Activation Size
The specification of a task activation size causes the task activation to be allocated with the specified size. It

is expressed in storage units; refer to package SYSTEM for the meaning of storage units.
Any attempt to exceed the activation size during execution causes a STORAGEERROR exception to be

raised. Unlike collections, there is generally no extension of task activations.

5.42.7. Specifkation of' SMALL

Only powers of 2 are allowed for' SMALL.
The length of the representation may be affected by this specification. If a size specification is also given for

the type, the size specification takes precedence; the specification of 'SMALL must then be accommodatable
within t!e specified size.

5.4.3. Enumeration Rzpresentation Clauses
For enumeration representation clauses [LRM 13.3], the following restrictions apply:

" The internal codes specified for the literals of the enumeration type may be any integer value between
INTEGER' FIRST and INTEGER' LAST. It is strongly advised to not provide a representation clause that
merely duplicates the default mapping of enumeration types, which assigns consecutive numbers in as-
cending order starting with 0, since unnecessary runtime cost is incurred by such duplication. It should be
noted that the use of attributes on enumeration types with user-specified encodings is costly at run time.

" Array types, whose index type is an enumeration type with non-contiguous value encodings, consist of a
contiguous sequence of components. Indexing into the array involves a runtime translation of the index
value into the corresponding position value of the enumeration type.

5-7



USER MANUAL FOR TARTAN ADA VMS 1750A

5.4.4. Record Representation Clauses
The alignment clause of record representation clauses [LRM 13.41 is observed. The specified expression

must yield a target-dependent value.
Staic objects may be aligned at powers of 2 up to a page boundary. The specified alignment becomes the

minimum alignment of the record type, unless the minimum alignment of the record forced by the component
allocation and the minimum alignment requirements of the components is already more stringent than the
specified alignment.

The component clauses of record representation clauses are allowed only for components and discriminants
of statically determinable size. Not all components need to be present. Component clauses for components of
variant parts are allowed only if the size of the record type is statically determinable for every variant.

The size specified for each component must be sufficient to allocate all possible values of the component
subtype (but not necessarily the component type). The location specified must be compatible with any alignment
constraints of the component type; an alignment constraint on a component type may cause an implicit alignment
constraint on the record type itself.

If some, but not all, discriminants and components of a record type are described by a component clause, then
the discriminants and components without component clauses are allocated after those with component clauses;
no auempt is made to utilize gaps left by the user-provided allocation.

5.4.5. Address clauses
Address clauses [LRM 13.5] are supported with the following restrictions:

* When applied to an object, an address clause becomes a linker directive to allocate the object at the given
address. For any object not declared immediately within a top-level library package, the address clause is
meaningless. Address clauses applied to local packages are not supported by Tartan Ada. Address clauses
applied to library packages are prohibited by the syntax; therefore, an address clause can be applied only to
a package if it is a body stub.

* Address clauses applied to subprograms and tasks are implemented according to the LRM rules. When
applied to an entry, the specified value identifies an interrupt in a manner customary for the target.
Immediately after a task is created, a runtime call is made for each of its entries having an address clause,
establishing the proper binding between the entry and the interrupt.

* Specified addresses must be constants.

5.4.6. Pragma PACK
Pragma PACK [LRM 13.1] is supported. For details, refer to the following sections.

5.4.6.1. Pragma PACK for Arrays

If pragma PACK is applied to an array, the densest possible representation is chosen. For details of packing,
refer to the explanation of size specifications for arrays (Section 5.4.2.3).

If, in addition, a length clause is applied to

1. the array type, the pragma has no effect, since such a length clause already uniquely determines the array
packing method.

2. the component type, the array is packed densely, observing the component's length clause. Note that the
component length clause may have the effect of preventing the compiler from packing as densely as
would be the default if pragma PACK is applied where there was no length clause given for the com-
ponent type.

5-8



APPENDDX FTO MIL-STD-1815A

5.4.6-2. The Predefind Type String
Package STANDARD applies Pragma PACK to the type string. However, when applied to character arrays,

this pragma cannot be used to achieve denser packing than is the default for the target: 1 character per 16-bit
word.

5.4.63. Pragma PACKfor Records
If pragma PACK is applied to a record, the densest - )ssible representation is chosen that is compatible with

the sizes and alignment constraints of the individual component types. Pragma PACK has an effect only if the
sizes of some component types are specified explicitly by size specifications and are of non-referable nature. In
the absence of pragma PACK, such components generally consume a referable amount of space.

It should be noted that default type mapping for records maps components of boolean or other types that
require only a single bit to a single bit in the record layout, if there are multiple such components in a record.
Otherwise, it allocates a referable amount of storage to the componert.

If pragma PACK is applied to a record for which a record representation clause has been given detailing the
allocation of some but not all components, the pragma PACK affects only the components whose allocation has
not been detailed. Moreover, the strategy of not utilizing gaps between explicitly allocated components still
applies.

5.4.7. Minimal Alignment for Types
Certain alignment properties of values of certain types are enforced by the type mapping rules. Any represen-

tation specification that cannot be satisfied within these constraints is not obeyed by the compiler and is ap-propriately diagnosed.

Alignment constraints are caused by properties of the target architecture, most notably by the capability to
extract non-aligned component values from composite values in a reasonably efficient manner. Typically, restric-
tions exist that make extraction of values that cross certain address boundaries very expensive, especially in
contexts involving array indexing. Permitting data layouts that require such complicated extractions may impact
code quality on a broader scale than merely in the local context of such extractions.

Instead of describing the precise algorithm of establishing the minimal alignment of types, we provide the
general rule that is being enforced by the alignment rules:

No object of scalar type including components or subcomponents of a composite type, may span a target-
dependent address boundary that would mandate an extraction of the object's value to be performed by two
or more extractions.

5.5. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS

The only implementation-dependent components allocated by Tartan Ada in records contain dope information
for arrays whose bounds depend on discriminants of the record. These components cannot be named by the user.

5.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLA USES
Section 13 5.1 of the Ada Language Reference Manual describes a syntax for associating interrupts with task

entries. Tartan Ada implements the address clause
for TOENTRY use at intID;

by associating the interrupt specified by intID with the toentry entry of the task containing this address
clause. The interpretation of intID is both machine and compiler dependent.

The Ada/1750A runtimes provide 16 interrupts that may be associated with task entries. These interrupts are
identified by an integer in the range 0..15. The intID argument of an address clause is interpreted as follows:

* If the argument is in the range 0.. 15, a full support interrupt as.,ciation is made between the interrupt*
specified by the argument and the task entry.

5-9



USER MANUAL FOR TARTAN ADA VMS 1750A

" If the argument is in the range 16.31, a fast interrupt association is made between the interrupt number
(argument-16) and the task entry.

" If the argument is outside the range 0.3 1, the program is erroneous.

For the difference between full support and fast interrupt handling, refer to Section 8.4.5.

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS
Tartan supports. UNCHECKEDCONVERSION with a restriction that requires the sizes of both source and

target types to be known at compile time. The sizes need not be the same. If the value in the source is wider than
that in the target, the source value will be trmcated. If narrower, it will be zero-extended. Calls on instantiations
of UNCHECKEDCONVERSION are made inline automatically.

5.8. IMPLEMENTATION-D'PENDENT ASPECTS OF INPUT-OUTPUT PACKAGES

Tartan Ada supplies the predefined input/output packages DIRECTIO, SEQUENTIALIO, TEXT IO, and
LOW LEVELIO as required by LRM Chapter 14. However, since MIL-STD-1750A is used in embedded
applications lacking both standard I/O devices and file systems, the functionality of DIRECT_1O,
SEQUENTIALIo, and TEXTio is limited.

DIRECT I0 and SEQUENTIALIO raise USEERROR if a file open or file access is attempted. TEXTIO
is supported to CURRENTOUTPUT and from CURRENTINPUT. A routine that takes explicit file names raises
USEERROR. LOWLEVELIO for MIL-STD-1750A provides an interface by which the user may execute XIO
operations. In both the SENDCONTROL and RECEIVECONTROL procedures, the device parameter specifies
an XIO address while the data parameter !3 the single word of data transferred.

5.9. OTHER IMPLEMENTATION CHARACTERISTICS

The following information is supplied in addition to that required by Appendix F to MIL-STD-1815A.

5.9.1. Definition of a Main Program

Any Ada library subprogram unit may be designated the main program for purposes of linking (using the
AL17 command) provided that the subprogram has no parameters.

Tasks initiated in imported library units follow the same rules for termination as other tasks [described in
LRM 9.4 (6-10)]. Specifically, these tasks are not terminated simply because the main program has terminated.
Terminate alternatives in selective wait statements in library tasks are therefore strongly recommended.

5.9.2. Implementation of Generic Units
All instantiations of generic units, except the predefined generic UNCHEC:(ED CONVERSION and

UNCHECKED DEALLOCATION subprograms, are implemented by code duplications. No attempt at sharing
code by multiple instantiations is made in this release of Tartan Ada. (Code sharing will be implemented in a
later release.)

Tartan Ada enforces the restriction that the body of a generic unit must be compiled before the unit can be
instantiated. It does not impose the restriction that the specification and body of a generic unit must be provided
as part of the same compilation. A recompilation of the body of a generic unit will obsolete any units that
instantiated this generic unit.

5-10



APPENDDC F TO ML-STD14815A

5.9.3. Implementation-Defined Characteristics in Package STANDARD
The implementation-dependent characteristics for MIL-STD-1750A in package STANDARD [Annex C] are:

package STANDARD is

type BYTE INTEGER is range -256 .. 255;
type SHORT INTEGER is range -256 .. 255;
type INTEGER is range -32768 .. 32767;
type FLOAT is digits 6 range -16#0.8000_00#E+32 .. 16#0.7FFFFF#E+32;
type LONGINTEGER is range -2147483648 .. 2147483647;
type LONG FLOAT is digits 9 range -16#0.8000_0000_00#E+32

Y6#0.7FFF FFFF FF#E+32 ;
type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

-- DURATION'SMALL - 2#1.0#E-14

edSTANDARD;

5.9.4. Attributes of Type Duration
The type DURATION is defined with the following characteristics:

DURATION' DELTA is 0.0001 SeC
DURATION' SMALL is 6.103516E-5 sec
DURATION' FIRST is -86400.0 sec
DURATION' LAST is 86400.0 sec

5.9.5. Values of Integer Attributes
Tartan Ada supports the predefined integer types INTEGER, BYTEINTEGER, SHORTINTEGER, and

LONGINTEGER.

The range bounds of the predefined type INTEGER are:

INTEGER' FIRST = -2"'15
INTEGER' LAST = 2*15-1

The range bounds of the predefined type BYTEINTEGER are:

BYTE INTEGER' FIRST = -256
BYTEINTEGER' LAST = 255

The range bounds of the predefined type SHORT-INTEGER are:

SHORT INTEGER'FIRST=-256
SHORTINTEGER' LAST =255

The range bounds of the predefined type LONGINTECioR are:

LONG INTEGER' FIRST =-2**31
LONG INTEGER' LAST - 2**3 1-1

The range bounds for subtypes declared in package TEXT IO are:

COUNT' FIRST = 0
COUNT' LAST - INTEGER' LAST - I

POSITIVE COUNT' FIRST = I
POSITIVE COUNT' LAST - INTEGER' LAST - I

FIELD' FIRST -0
FIELD' LAST = 20

5-11



USER MANUAL FOR TARTAN ADA VMS 17SOA

The range bounds for subtypes declared in packages DIRECTIO are:

COUNT' FIRST = 0
COUNT' LAST = INTEGER' LAST/ELEMENTTYPE' SIZE

POSITIVECOUNT' FIRST = 1
POSITIVECOUNT' LAST = COUNT' LAST

5.9.6. Values of Floating-Point Attributes
Attribute Value for FLOAT

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON 16#0.1000_000#E-4
approximately 9.53674E-07

SMALL 16#0.800000#E-21
approximately 2.58494E-26

LARGE 16#0.FFFPF80#E+21

approximately 1.93428E+25

SAFEEMAX 127

SAFESMALL 16#0.1000_000#E-31
approximately 2.93874E-39

SAFELARGE 16#0.7FFF FC0#E+32
approximately 1.70141E+38

FIRST -16#0.8000_000#E+32
approximately -1.70141E+38

LAST 16#0.7FFF..FFO#E+32
approximately 1.70141E+38

MACHINERADIX 2
MACHINEMANTISSA 23
MACHINEEMAX 127
MACHINEEMIN -128
MACHINEROUNDS TRUE
MACHINEOVERFLOWS TRUE

5-12



APPENDIX F TO MIL-STD-1815A

Attribute Value for LONG FLOAT

DIGITS 9

MANTISSA 31

EMAX 124

EPSILON 16#0.4000_00O000#E-7
approximately 9.3132257461548E-10

SMALL 16#0.8000000_00#E-31
approximately 2.3509887016445E-38

LARGE 16#0.FFFF3FFEJ00#E+3 1
approximately 2.1267647922655E+37

SAFEEMAX 127

SAFE SMALL 16#0.1000_000_00#E-31
approximately 2.9387358770557E-39

SAFELARGE 16#0.7FFFFFFFj00#E+32
approximately 1.7014118338124E+38

FIRST -16#0.8000_0000_00#E+32
approximately -1.7014118346016E+38

LAST 16#0.7FFF_FFFF_.FF#E+32
approximately 1.7014118346047E+38

MACHINE RADIX 2
MACHINE MANTISSA 39
MACHINE EMAX 127
MACHINEEMIN .128
MACHINEROUNDS TRUE
MACHINEOVERFLOWS TRUE

5-13



TEST PApAETrVS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of -n input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below. The use of the '*' operator signifies a multiplication of the
following character, and the use of the '&' character signifies
concatenation of the preceeding and following strings. The values within
single or double quotation marks are to highlight character or string
values:

flame and Meaning Value

$ACC_SIZE 16
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIGID1 239 * 'A' & '1'
An identifier the size of the
maximum input line length which
is identical to $BIG_ID2 except
for the last character.

$BIG_ID2 239 * 'A' & '2'
An identifier the size of the
maximum input line length which
is identical to $BIG_IDI except
for the last character.

$BIGID3 120 * 'A' & '3' 119 * 'A'
An identifier the size of the
maximum input line length which
is identical to $BIG_ID4 except
for a character near the middle.



Name and :Heaning Value

$BIG_ID4 120 * 'A' & '4' & 119 * 'A'
An identifier the size of the
maximum input line length which
is identical to $BIG_ID3 except
for a character near the niddle.

$BIG_INT_LIT 237 * '0' & "298"
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

SBIG_REAL_LIT 235 * '0' & "690.0"
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIGSTRIUGI '"' & 120 * 'A' &
A string literal which when
catenated with BIG_STRING2
yields the image of BIGIDI.

$BIGSTRING2 '"' & 119 * 'A' & '1' & I",

A string literal which when
catenated to the end of
BIG_STRING1 yields the image of
BIG_IDI.

$BLANKS 220 *
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT_LAST 32766
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$DEFAULTMEMSIZE 65_536
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULT_STOR_UNIT 16
An integer literal whose value
is SYSTEM.STORAGE_UNIT.



TEST PARA::ETES

!Uame and Meaning Value

$DEFAULTSYS NAME MILSTD_1750A
The value of the constant
SYSTE!.SYSTEM NAME.

SDELTADOC 2#1.0#E-31
A real literal whose value is
SYSTEM.FINEDELTA.

$FIELDLAST 20
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

SFIXEDNA!E THEREISNOSUCHFIXED_TYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NMAE THERETSNOSUCHFLOATTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LOITG FLOAT.

$GREATERTHADURATION 100000 .0
A universal real literal that
lies betieen DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHANDURATION_BASELAST 131073.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 200
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNALFILENAME1 BADFILENAME_1*'
An external file name which
contains invalid characters.

$ILLEGALEXTERNALFILEIIAME2 BADFILENAME_2*^
An external file name which
is too long.



T,T PARAMETERS

Name and Meaning Value

$INTEGERFIRST -32768
A universal integer literal
whose 7alue is INTEGER'FIRST.

$INTEGER_LAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER_LAST_PLUS_1 32768
A universal integer literal
whose value is IITEGER'LAST + 1.

SLESS_THANDURATION -100000.0
A universal real literal that
lies between DURATIOH'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESS_THANDURATIOIT_BASE_FIRST -131073.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOqPRIORITY 10
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA_DOC 31
An integer literal whose 7alue
is SYSTEM.MAXMANTISSA.

$MAXDIGITS 9
Maximum digits suvported for
floating-point types.

$MAXINLEN 240
Maximum input line length
permitted by the implementation.

$MAX_IT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAX_INT_PLUS_1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+I.



TEST PARAM!ETERS

Name and Meaning Value

$M!AXLEN_INT_BASED_LITERAL "2:" & 235 * '0' & "11:"
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAX IN LEN
long.

$MAX_LEN_REAL_BASED_LITERAL "16:" & 233 * '0' & "F.E:"
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXIIILET Icng.

$:AXSTRING_LITERAL '"' & 233 * 'A' & '"'

A string literal of size
MAX_IN_LEN, including the quote
characters.

$MIN_INT -2147483643
A universal integer literal
whose value is SYSTEM.MIN TNT.

$MIN_TASK_SIZE 16
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

SNAME BYTEINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONGFLOAT, or LONG_I'TEGER.

SUAME_LIST M.IL_STDI750A
A list of enumeration literals
in the type SYSTEM. AME,
separated by commas.

NEG_BASED_INT 16 #FFFFFFFE#
A based integer literal "hose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.



TEST PARANETERS

flame and Meaning Value

SI EW_:* EM_SIZE 1_048576
An integer literal whose value
is a permitted argument for
pragma MEMORY_SIZE, other than
$DEFAULT EMSIZE. If there is
no other value, then use
$DEFAULTME-!SIZE.

$I!EW_STORUNIT 16
An integer literal whose value
is a permitted argument for
pragma STORAGEUNIT, other than
$DEFAULT STORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NE_SYSNAME MILSTD_1750A
A value of the type SYSTEM.NAME,
other than SDEFAULTSYS NAME. If
there is only one value of that
type, then use that value.

$TASK_SIZE 48
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK 0.0001
A real literal whose value is
SYSTEM.TICK.



77:HDRAVI TESTS

APPENDIX D

WITHDRAWN TESTS
Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C This test expects that the string "-- iOP OF PAGE. --

63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A39005G This test unreasonably expects a component clause to
pack an array component into a minimum size (line 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective
wait alternative (line 31).

d. C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implemer.tation
may use interleaved execution in such a way that the evaluation
of the guards at lines 50 V54 and the execution of task CHANGIING-
OF THEGUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

e. BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even though none of
the units is illegal with respect to the units it depends on; by
AI-00256, the illegality need not be detected until execution is
atteinpted (line 95).

f. CD2A62D This test wrongly requires that in array object's size
be no greater than 10 although its subtype's size was specified
to be 40 (line 137).

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests] These
tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly converts them to the



UITIRAUN TESTS

parent type (Ada standard 3.4:14)). Additionally, they use the
'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

h. CD2A81G, CD2A83G, CD2A84N & M, & CD5011O [5 tests] These tests
assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this
is not the case, and the main program may loop indefinitely
(lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

i. CD2Bl5C & CD7205C These tests expect that a 'STORAGESIZE
length clause provides precise control over the number of
designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

j. CD2D11B This test gives a SMALL representation clause for a
derived fixed-point typo, (at line 30) that defines a set of
model numbers that are *aot necessarily represented in the
parent type; by Comnentary AI-00099, all mode! numbers of a
derived fixed-point type must be representable values of the
parent type.

k. CD5007B This test wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-
related subprogram (line 303).

1. ED7004B, ED7005C & D, ED7006C & D [5 tests] These tests check
!,arious aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD7105A This test requires that successive calls to CALENDAR.-
CLOCK change by at least SYSTEM!.TICK; however, by Commentary
AI-00201, it is only the expected frequency of change that must
be at least SYSTEM.TICK--particular instances of change may be
less (line 29).

n. CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by
the !G9 ARG.

o. CD7205D This test checks an invalid test objective it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of storage
for a collection.

p. CE21071 This test requires that objects of t'lo similar scalar
types be distinguished when read from a file--DATAERROR is
expected to be raised by an attempt to read one object as of
the other type. However, it is not clear exactly how the Ada



VITHDRA'W TESTS

standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

q. CE31I1C This test requires certain behavior, when two files are
associated with the same external file, that is not reqqired by
the Ada standard.

r. CE3301A This test contains several calls to END_OFLE &
ENDOFPAGE that have no parameter: these calls were intended
to specify a file, not to refer to STANDARD_INPUT (lines 103,
107, 118, 132, & 136).

s. CE341!B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUTERROR is raised
by a subsequent PUT operation. But the former operation uill
generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.



CO::'PILER AND LIFTER OPTIONS

APPENDIX E

COMPILER AND LI!IKER OPTIONS



Chapter 3
Compiling Ada Programs

The TADA command is used to compile and assemble Ada compilation units.

3.1. THE TADA COMMAND FORMAT
The TADA command has this format:

TADA/17 50A [ qualh'zer [ (option, ... ) )... I I flle-spec [ Iqualifler [ (option,.....]]

Tartan provides VMS-hosted compilers for several target computers. All these compilers are invoked by
TADA which uses qualifiers to distinguish among them. To invoke the 1750A-targeted compiler, supply the
/17 5 0A qualifier.

By default, if no qualifier is supplied, the compiler invokes the VMS-targeted compiler if it has been installed
on your system. If an attempt is made to invoke a compiler that has not been installed on your system, the
following error message is issued-

$ TADA RADAR SCREEN.ADA
%DCL-W-ACTIMAGE, error activating image TADAHOME:TADA.EXE
-CLI-E-IMAGEFNF, image file not found DRAO: (COMPILERS.ADA]TADA.EXE;

The parameterfle-spec is a source file name. Since the source files need not reside in the directory in which
the compilation takes place, file-spec must include sufficient directory information to locate the file. If no
extension is supplied with the file name, a default extension of .ADA will be supplied by the compiler.

TADA will accept only one source file per compilation. The source file may contain more than one compila-
tion unit, but it is considered good practice t place only one compilation unit in a file. The compiler sequentially
processes all compilation units in the file. Upon successful compilation of a unit,

" the Ada program library ADA. DB is updated to reflect the new compilation time and any new dependencies
" one or more separate compilation files and/or object files are generated

If no errors are detected in a compilation unit, The compiler produces an object module and updates the library.
If any error is detected, no object code file is produced, a source Lsting is produced, and no library entry is made
for that compilation unit. If warnings are generated, both an object code file and a source listing are produced.

The output from Tartan Ada VMS 1750A is a file whose type depends on both the Tool Set selected in
creating the program library (see Section 4.) and whether the unit compiled is a specification or body unit. See
Section 3.4 for a list of these file types as well as the extensions of other files that may be left in the directory.

3.2. COMMAND QUALIFIERS
Command qualifiers indicate special actions to be performed by the compiler or special output file properties.

A qualifier identifying the target-code format must be used to invoke the 1750A-targeted compiler. Currently,
that qualifier is / 1750A. The following qualifiers are available:

/1750A Invoke the cross compiler targeted to MIL-STD-1750A computer. This qualifier
is mandatory to invoke the 1750A-targeted compiler.

3-1



USER MANUAL FOR TARTAN ADA VMS 1750A

/CROSS REFERENCE
/NOCROSSREFERENCE [default]

Controls whether the compiler generates a cross-reference table of linknames for
the compilation unit. The table will be placed in the file unit-name.XRF (See
Section 3.5).

/DEBUG
/NODEBUG (default] Controls whether debugging information is included in the object code file. This

qualifier may be used only if the Tartan Tool Set has been selected when creating
the program library (see Section 4.2). It is not necessary for all object modules to
include debugging information to obtain a linkable image, but use of this qualifier
is encouraged for all compilations. No significant execution-time penalty is in-
curred with this qualifier.

/LIST[=option]
/NOLIST Controls whether a listing file is produced. If produced, the file has the source file

name and a . LI S extension. The available options are:

ALWAYS Always produce a listing file

NEVER Never produce a listing file, equivalent to /NOLI ST

ERROR Produce a listing file only if a compilation error or warning occurs

When no form of this qualifier is supplied in the command line, the default
condition is /LIST-ERROR. When the LIST qualifier is supplied without an
option, the default option is ALWAYS.

/MACHINECODE
/NOMACHINE.CODE [default]

Controls whether the compiler produces an assembly code file in addition to an
object file, which is always generated. The assembly code file is not intended to
be input to an assembler, but serves as documentation only.

/NOENUMIMAGE Controls whether compiler omits dam segments with the text of enumeration
literals. This text is normally produced for exported enumeration types in order to
support the ' IMAGE attribute. You should use /NOENUMIMAGE only when you
can guarantee that no unit that will import the enumeration type will use' IMAGE.
However, if you are compiling a unit with an enumeration type that is not visible
to other compilation units, this qualifier is not needed. The compiler can recog-
nize when ' IMAGE is not used and will not generate the supporting strings. This
qualifier is intended to reduce the size of execution images for embedded systems.
The /NOENUMIMAGE qualifier cannot be negated.

/OPT=n Controls the level of optimization performed by the compiler, requested by n. The
/OPT qualifier cannot be negated. The optimization levels available are:

n =0 Minimum - Performs context determination, constant folding, al-
gebraic manipulation, and short circuit analysis.

n = 1 Low - Performs level 0 optimizations plus common subexpression
elimination and equivalence propagation within basic blocks. It also
optimizes evaluation order.

3-2



COMPWNG ADA PROGRAMS

n =2 Space - This is the defa.t level if none is specified. Performs level 1
optimizations plus flow analysis which is used for common sub-
expression elimination and equivalence propagation across basic
blocks. It also performs invariant expression hoisting, dead code
elimination, and assignment killing. Level 2 also performs lifetime
analysis to improve register allocation. It also performs inline expan-
sion of subprogram calls indicated by Pragma INLINE which ap-
pears in the same compilation unit.

n =3 Time - Performs level 2 optimizations plus inline expansion of sub-
program calls which the optimizer decides are profitable to expand
(from an execution time perspective). Other optimizadions which
improve execution time at a cost to image size are performed only at
this level.

/PHASES
/NOPHASES [default] Controls whether the compiler announces each phase of processing as it occurs.

/SUPPRESS[=option, Suppresses the specific checks identified by the options supplied. The
/SUPPRESS qualifier has the same effect as a global pragma SUPPRESS applied
to the source file. If the source program also contains a pragma SUPPRESS, then
a given check is suppressed if either the pragma or the qualifier specifies it; that
is, the effect of a pragma SUPPRESS cannot be negated with the command line
qualifier. The SUPPRESS qualifier cannot be negated.

The available options are:

ALL Suppress all checks. This is the default if the
qualifier is supplied with no option.

ACCESS-CHECK As specified in the Ada LRM, Section 11.7.

CONSTRAINTCHECK Equivalent of (ACCESSCHECK, INDEX-CHECK,
DISCRIMINANT_CHECK, LENGTHCHECK,
RANGECHECK).

DISCRIMINANT CHECK As specified in the Ada LRM, Section 11.7.

DIVISIONCHECK Will suppress compile-time checks for division by
zero, but the hardware does not permit efficient run.
time checks, so none are done.

ELABORATIONCHECK As specified in the Ada LRM, Section 11.7.

INDEXCHECK As specified in the Ada LRM, Section 11.7.

LENGTH CHECK As specified in the Ada LRM, Section 11.7.

OVERFLOWCHECK Will suppress compile-time checks for overflow, but
the hardware does not permit efficient runtime
checks, so none are done.

RANGE-CHECK As specified in the Ada LRM, Section 11.7.

STORAGECHECK As speifwied in the Ada LRM, Section 11.7. Sup-
presses only stack checks in generated code, not the
checks made by the allocator as a result of a new
Operation.

3-3



Chapter 4
The Ada Program Library

The Tartan Ada VMS 1750A Program Librarian (AL17) implements the Ada Language requirement for
separate compilation and dependency control The program library directory holds all necessary compilation
units, including packages that are part of the application under development and any standard packages such as
those for I/O.

The library adminisration file is a single file ADA.DB that records the dependencies among these units and
their compilation history.

The term Ada program librarian refers to executable code that manipulates tc!e library; that is, subcommands
of the library command AL17 that are discussed in this chapter.

A compilation unit in a library (library unit or secondary unit) is identified by its Ada-name, which is either a
simple name (an identifier) or the simple name of a subunit and the name of its ancestor. More information about
Ada compilation units and program libraies is given in Chapter 10 of the Ada Language Reference Manual. The
library administraton file does not contain the text of compilation units; it contains only references to files that
contain the compilation units in their source and compiled forms.

4.1. THE AL17 COMMAND

The AL17 command invokes the Ada Program Librarian to perform the following operations:

* Create an Ada program library
* Delete unit(s) from an Ada library or delete the entire library
* Check the closure of a library unit
* Describe the status of a library unit by generating a dependency graph
* Insert a non-Ada object into the library as the body of a package.
* Link an executable image.

The format of the AL17 command is
$ AL17 subcommand lqual#Zer...] [parameter...] Iqualifier...]

Each ope' -'on - reqe S d through a subcommand. All AL17 subcommands except CREATE assume that
the user's Ada library exists in the current directory. The following sections discuss the subcomnands and their
appropriate qualifiers and parameters.

4.2. THE CREATE SUBCOMMAND

The CREATE command creates an initialized Ada library database file, ADA.CB, and places it in a directory
that has been created to hold the library database file and files required by the library, i.e., separate compilation
and all compiler-geneated files. Standard system and Ada 1/0 packages are placed in the library directory and
references to them are recorded in ADA. DB.

The tormat of the CREATE command is
$ AL17 CREATE [/TOOLSET-value] [directory-Spec]

The CREATE subcommand accepts the following qualifier.

/TOOLSET=val e Identifies the Tool Set for which the compiler is to generate output. The two possible.
values are:

4.1



I

THE ADA PROGRAM LIBRARY

used. A reference to this file specification (by means of the supplied Ada-name) will be entered into the current
Ada library. The file specification must contain the file name and type. No wildcard characters are allowed in
the file specification.

If a specification for a foreign body is deleted from the program library, the database entry for the body is also
deleted. The object file is not deleted.

Example:
$ AL17 FOREIGNBODY adatime USER01:[PROJECT]fortrantime.obj

The AL17 FOREIGN BODY command has replaced the standard package adatime with a reference to a
timing module written in FORTRAN. The ADA. DB file now contains a pointer for this package in the file
USER01: (PROJECT] fortran time.obj.

4.8. THE LINK SUBCOMMAND
The LINK command checks that the unit within the library specified by the user has the legal form for a main

unit, checks all its dependencies, finds all required object files, and links the main program with its full closure
(See Section 4.5) producing an executable image. The format of the LINK command is

$ AL17 LINK[lqualfler... I library-unit-name (IqualfiTer...]

where the parameter library-unit-name specifies the unit in the library to be made the main program and must be
supplied.

If the Tartan Tool Set was selected by the AL17 CREATE command, the AL17 LINK command calls the
Tartan Linker which is documented in Object File Utilities for the Tartan Ada VMS 1750A, Chapter 2. The
output file from the Tartan linker is library-unit-name. XTOF.

If the PSS Tool Set was selected by the AL17 CREATE command, the AL17 LINK command calls the
Macro Allocation Processor (MAP) to link the application. MAP is documented in the PSS Tool Set Manual Set.
The output file from MAP is library-unit-name. so.

The following qualifiers may be used with the ALl 7 LINK command:

/ALLOCATIONS Produce a link map showing the section allocations. This qualifier may be used only if
the Tartan Tool Set has been selected when creating the library (See Section 4.2).

/ CONTROL-file-spec
Specifies a file used to pass instructions and qualifiers to the Tool Set Assembler and
Linker programs. This file may be used to specify what Toolset components, commands
or versions of components are to be used in building the final program. No wildcard
characters are allowed in the file specification. By default, with the Tartan Tool Set the
file TLINK. LCF in TADAHOME, the directory containing the compiler and librarian (see
Installation Instructions), is used. If you are using the PSS Tool Set, the file is
DEFITSLNK. COM in in TADAHOME. Any other file substituted must follow the format
used in the default File. See Object File Utilities for Tartan Ada VMS 1750A, Chapter 2
information about linker control files.

/EXECUTABLE L -file-spec] Controls th- name of the executable image created by the Tool Set linker. The
default file name is that of the main program. No wildcard characters are allowed in the
file specification.

/KEEP Retain the elaboration order and link control files after the linking operation is complete.
The program may then be relinked using The Tartan Linker, TLINK, independent of the
librarian (See Object File Utilities for Tartan Ada VMS 1750A, Chapter 2). This method
is primarily a debugging tool. The user assumes full responsibility for tie consistency
of the program when it is used instead of using the ALl7 LINK command.

/MAP Produce a link map containing all information except the unused section listings. This
qualifier may be used only if the Tartan Tool Set has been selected when creating the
library (See Section 4.2).

4-11


